Learn how to run successful big data projects, how to resource your teams, and how the teams should work with each other to be cost effective. This book introduces the three teams necessary for successful projects, and what each team does.Most organizations fail with big data projects and the failure is almost always blamed on the technologies used. To be successful, organizations need to focus on both technology and management.Making use of data is a team sport. It takes different kinds of people with different skill sets all working together to get things done. In all but the smallest projects, people should be organized into multiple teams to reduce project failure and underperformance.This book focuses on management. A few years ago, there was little to nothing written or talked about on the management of big data projects or teams. Data Teams shows why management failures are at the root of so many project failures and how to proactively prevent such failures with your project.What You Will LearnDiscover the three teams that you will need to be successful with big dataUnderstand what a data scientist is and what a data science team doesUnderstand what a data engineer is and what a data engineering team doesUnderstand what an operations engineer is and what an operations team doesKnow how the teams and titles differ and why you need all three teamsRecognize the role that the business plays in working with data teams and how the rest of the organization contributes to successful data projectsWho This Book Is ForManagement, at all levels, including those who possess some technical ability and are about to embark on a big data project or have already started a big data project. It will be especially helpful for those who have projects which may be stuck and they do not know why, or who attended a conference or read about big data and are beginning their due diligence on what it will take to put a project in place.This book is also pertinent for leads or technical architects who are: on a team tasked by the business to figure out what it will take to start a project, in a project that is stuck, or need to determine whether there are non-technical problems affecting their project.